数学者と学ぶ量子力学

SG2022-10

(page 1)

Hilbert space

Definition (Banach space)

A normed space $B = (B, \|\cdot\|)$ is called a Banach space, if B is complete with respect to $\|\cdot\|$.

Definition (Hilbert space) An inner product space $H = (H, \langle \cdot, \cdot \rangle)$ is called a Hilbert space, if H is complete with respect to the induced norm $\|\cdot\|$.

Theorem (GNS construction) Let \mathcal{A} be a unital C^* -algebra and $\omega \in S(\mathcal{A})$. Then there exists a pair of a representation π , a Hilbert space H and $\Omega \in H$ such that $\omega(a) = \langle \Omega, \pi(a)\Omega \rangle$ for all $a \in \mathcal{A}$.

Quasi-local algebra 3

Definition (bounded linear operator) Let B_1 and B_2 are Banach spaces. An linear operator (map) L is called bounded, if

$$||L||_{\text{op}} := \sup_{x \in B_1 \setminus \{0\}} \frac{||Lx||_{B_2}}{||x||_{B_1}} < \infty.$$

Theorem (Riesz represent theorem) For any bounded linear operator $f: H \to \mathbb{C}$, there exists a unique $\xi \in H$ such that $f(\eta) = \langle \xi, \eta \rangle$ for all $\eta \in H$.

 C^* -algebra 2

Let Γ be a countable set, $\mathcal{P}(\Gamma)$ be the collection of subsets of Γ ,

$$\mathcal{P}_{\mathrm{f}}(\Gamma) := \{\Lambda \in \mathcal{P}(\Gamma) | |\Lambda| := \#\Lambda < \infty\}.$$

We assume that at each site $x \in \Gamma$ there is a *d*-dimensional quantum spin system with observable (operator) algebra $\mathcal{A}(\{x\}) := M_d(\mathbb{C})$. For $\Lambda \in \mathcal{P}_f(\Gamma)$, we define the corresponding algebra $\mathcal{A}(\Lambda)$ of observables by

$$\mathcal{A}(\Lambda) := \bigotimes_{x \in \Lambda} \mathcal{A}(\{x\}) = \bigotimes_{x \in \Lambda} M_d(\mathbb{C}).$$

Since for $\Lambda_1 \subset \Lambda_2$, $C^*(\Lambda_1)$ is embedded in $C^*(\Lambda_2)$ by the mapping

$$C^*(\Lambda_1) \ni a \mapsto a \otimes I_{\mathcal{A}(\Lambda_2 \setminus \Lambda_1)} \in C^*(\Lambda_2),$$

we are able to define the C^* -algebra $\mathcal{A}_{loc}(\Gamma)$ by

Definition (Banach algebra)

A Banach algebra \mathcal{A} is an algebra and also a Banach space such that $||ab|| \leq ||a|| ||b||$ for all $a, b \in \mathcal{A}$.

Definition $(C^*-algebra)$ A Banach algebra \mathcal{A} with involution * such that $||a^*a|| =$ $||a||^2$ for all $a \in A$, is called a C^{*}-algebra. In particular, \mathcal{A} has a unit I, we call \mathcal{A} a unital C^* -algebra.

Definition (representation) A representation of \mathcal{A} on H is a linear map $\pi : \mathcal{A} \to$ B(H) such that $\pi(a^*) = \pi(a)^*$ and $\pi(ab) = \pi(a)\pi(b)$ for all $a, b \in \mathcal{A}$.

Definition (positive linear functional) A linear operator $\varphi : \mathcal{A} \to \mathbb{C}$ is called positive, if $\varphi(a^*a) \ge 0$ for all $a \in \mathcal{A}$.

$$\mathcal{A}_{\mathrm{loc}}(\Gamma) := \bigcup_{\Lambda \in \mathcal{P}_{\mathrm{f}}(\Gamma)} \mathcal{A}(\Lambda)$$

with the norm defined by $||x|| := ||x||_{\mathcal{A}(\Lambda)}$ for $x \in \mathcal{A}(\Lambda)$ and $\Lambda \in \mathcal{P}_{\mathrm{f}}(\Gamma)$.

Definition (quasi-local algebra) We define the quasi-local algebra $\mathcal{A}(\Gamma)$ by

 $\mathcal{A}(\Gamma) := \overline{\mathcal{A}_{\text{loc}}(\Gamma)}^{\|\cdot\|},$

where $\overline{\cdot}^{\|\cdot\|}$ is the completion with respect to the norm $\|\cdot\|$ on $\mathcal{A}_{loc}(\Gamma)$.

Definition (closed two-sided ideal) A closed subspace I of a C^* -algebra \mathcal{A} is called a closed two-sided ideal (or simply ideal), if $ab, ba \in I$ for all $a \in \mathcal{A}$ and $b \in I$.

Definition (state)

A positive linear functional $\varphi : \mathcal{A} \to \mathbb{C}$ is called a state, if $\|\varphi\| = 1$.

Definition (simple)

A C^* -algebra \mathcal{A} is called simple, if any closed two-sided ideal of \mathcal{A} equals to \mathcal{A} or $\{0\}$.

Denote the total set of states on \mathcal{A} by $S(\mathcal{A})$.

Proposition

Any quasi-local algebra $\mathcal{A}(\mathbb{Z}^d)$ for a quantum spin sys-

tem is simple.

数学者と学ぶ量子力学

SG2022-10

Hamiltonian

Definition (interaction)

Let \mathcal{A} be a quasi-local algebra of a quantum spin system on Γ . An interaction Φ on Γ is defined by a map $\Phi: \mathcal{P}_{f}(\Gamma) \to \mathcal{A}$ such that for each $\Lambda \in \mathcal{P}_{f}(\Gamma), \Phi(\Lambda)$ is selfadjoint and belongs to $\mathcal{A}(\Lambda)$.

Toric code 5

To introduce Toric code, let $\Gamma := \{ \text{edges between nearest neighbor points in } \mathbb{Z}^2 \},\$

$$\mathcal{A}(\{x\}) := M_2(\mathbb{C}), \quad x \in \Gamma,$$

$$\sigma_j^x := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_j^z := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(page 2)

An interaction Φ on Γ is called bounded, if

$$\|\Phi\| := \sup_{x \in \Gamma} \sum_{\Lambda \in \mathcal{P}_{\mathbf{f}}(\Gamma); x \in \Lambda} \|\Phi(\Lambda)\|.$$

An interaction Φ on Γ is called finite range, if there exists c > 0 such that $\Phi(\Lambda) = 0$ whenever $\sup_{x,y \in \Lambda} d(x,y) > c$.

Definition (local Hamiltonian) For $\Lambda \in \mathcal{P}_{\mathbf{f}}(\Gamma)$ the local Hamiltonian H_{Λ} of interaction Φ on Γ is defined by

$$H_{\Lambda} := \sum_{X \subset \Lambda} \Phi(X), \quad \Lambda \in \mathcal{P}_{\mathrm{f}}(\Gamma).$$

Definition (derivation) A derivation δ of a C^* -algebra \mathcal{A} is a linear map from a *-subalgebra $D(\delta)$ of \mathcal{A} such that

• $\delta(A^*) = \delta(A)^*$ for all $A \in D(\delta)$.

From $\mathcal{A}(\{x\})$ we define the quasi-local algebra $\mathcal{A}(\Gamma)$.

A toric code is a model with an interaction Φ given by

$$\Phi(\Lambda) := \begin{cases} -A_s, & \Lambda = s \text{ for some star } s, \\ -B_p, & \Lambda = p \text{ for some plaquette } p, \\ 0, & \text{else,} \end{cases}$$
where
$$A_s := \bigotimes_{j \in s} \sigma_j^x \quad (\text{star operator})$$

$$B_p := \bigotimes_{j \in p} \sigma_j^z \quad (\text{plaquette operator}).$$

•
$$\delta(AB) = \delta(A)B + A\delta(B)$$
 for all $A, B \in D(\delta)$.

For a bounded finite range interaction
$$\Phi$$
,

 $\delta(A) := \lim_{\Lambda \uparrow \Gamma} i[H_{\Lambda}, A]$

defines a derivation with domain $D(\delta) = \mathcal{A}_{\text{loc}}$.

Lemma

Let Φ be a bounded finite range interaction on Γ and δ be a corresponding derivation. Then,

$$\alpha_t(A) := \exp(t\delta)(A) := \sum_{k=0}^{\infty} \frac{t^n}{k!} \delta^n(A), \quad A \in \mathcal{A}(\Gamma)$$

defines a strongly continuous group $\alpha = (\alpha_t)_{t \in \mathbb{R}}$ of automorphism on $\mathcal{A}(\Gamma)$.

Definition (C^* -dynamical system) A C^{*}-dynamical system (\mathcal{A}, α) is a pair of a C^{*}-algebra

Remark

In the case that $\Gamma := \{ edges of (\mathbb{Z}/N\mathbb{Z})^2 \}$ (finite sys-

tem), the ground state ω_0 is given by

$$\omega_{0} := \prod_{s:\text{star}} \frac{I + A_{s}}{\sqrt{2}} | \uparrow \rangle \otimes \cdots \otimes | \uparrow \rangle$$

where $| \uparrow \rangle := \begin{bmatrix} 1\\ 0 \end{bmatrix}$.

For all star s and plaquette p,

•
$$[A_s, B_p] := A_s B_p - B_p A_s = 0.$$

Proposition

If ω is a state on $\mathcal{A}(\Gamma)$ such that $\omega(A_s) = \omega(B_p) = 1$ for

and a strongly continuous group $\alpha = (\alpha_t)_{t \in \mathbb{R}}$ of auto-

morphism on \mathcal{A} .

Definition (ground state)

Let (\mathcal{A}, α) is a C^* -dynamical system. An state $\omega \in \mathfrak{A}$ is called a α -ground state, if $\omega \circ \alpha_t = \omega$ for all $t \in \mathbb{R}$ and the representation H_{ω} appeared in GNS construction is positive.

all star s and plaquette p, then ω is a ground state.

Theorem

Toric code has a translation invariant grand state ω_0 .

Reference

[1] Pieter Naaijkens, Quantum Spin System on Infinite Lattice, Lecture Notes in Physics 933, Springer Cham, arXiv 1311.2717v2.