[SG3] 本物を見て考えよう!: 脊椎動物の胚観察から数理の可能性を探る

[参加教員]

○高瀬 悠太:生物科学専攻(MACS特定助教)

荒木 武昭:物理学・宇宙物理学専攻(准教授)

國府 寬司:数学-数理解析専攻(教授)

高橋 淑子:生物科学専攻(教授)

平島 剛志: 医学研究科 医学•医科学専攻(講師)

生物科学 物理学 数学

190412 MACS-SG説明会

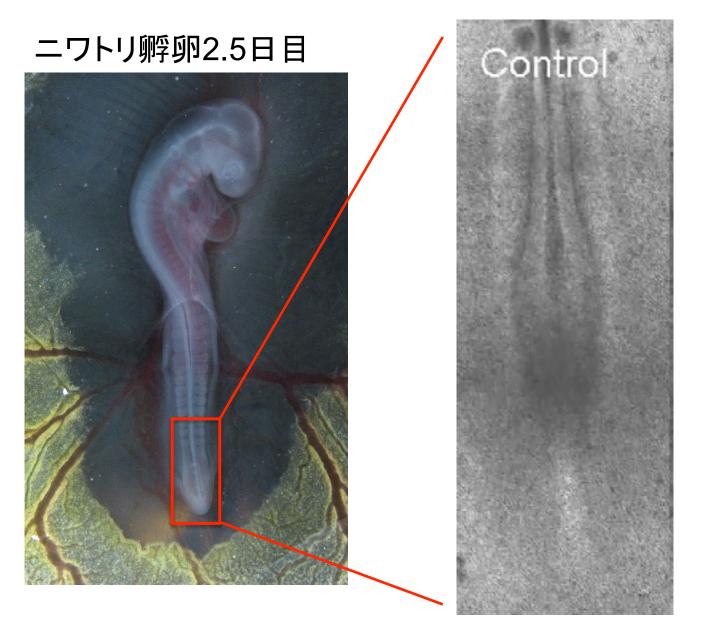
本スタディグループの目的

○発生現象を説明できる新規数理モデルを考える

o実物を介して分野間の交流を深める!!

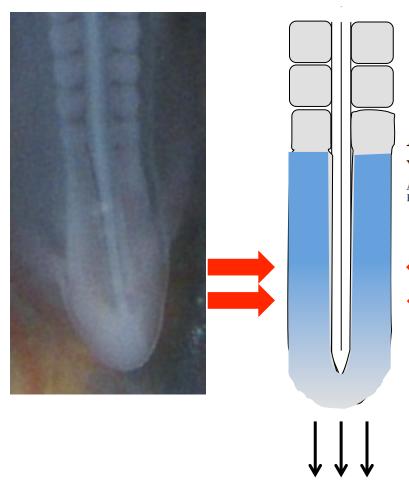
本スタディグループの実施内容

前期(5月~8月):


- ○数理と発生現象との融合研究の実例を学ぶ
 - -論文の輪読(4,5回)
 - -トリ胚の観察実習(1,2回)

後期(10月~翌3月):

- ○生体組織における「力」や「硬さ」の測定手法を学ぶ
- (o数理と生物科学との融合研究の実例を学ぶ)
- ○トリ胚組織の「硬さ」や組織にかかる「力」を測定してみる


主な活動日は金曜5限(16:30~)を予定 (参加メンバーが最大限参加できる日程に調整します)

今回取り上げる実例: 体幹部(体軸)の伸長

(Oginuma, M et al., Dev. Cell, 2017より引用)

今回取り上げる実例:体幹部(体軸)の伸長

論文1:組織の「硬さ」変化 (液体状→固体状へ)

A fluid-to-solid jamming transition underlies vertebrate body axis elongation

Alessandro Mongera^{1,2,7}, Payam Rowghanian^{1,2}, Hannah J. Gustafson^{1,2,3}, Elijah Shelton^{1,2}, David A. Kealhofer⁴, Emmet K. Carn¹, Friedhelm Serwane^{1,2,8}, Adam A. Lucio^{1,2}, James Giammona^{2,4} & Otger Campàs^{1,2,5,6}*

論文2: 周辺組織からの「力」

Mechanical Coupling Coordinates the Coelongation of Axial and Paraxial Tissues in Avian Embryos

Fengzhu Xiong^{1,2,3}, Wenzhe Ma⁴, Bertrand Bénazéraf⁵, L. Mahadevan³, Olivier Pourquié^{1,2,6*}

これら論文などから「硬さ」「力」の測定方法を学び後期の実習で実践を試みる!

活動スケジュー

前期(5月~8月):

- ○数理と発生現象との融合研究の実例を学ぶ
 - -論文の輪読(4,5回)
 - -トリ胚の観察実習(1,2回)

<u>後期(10月~翌3月)</u>:

- ○生体組織における「力」や「硬さ」の測定手法を学ぶ
- (o数理と生物科学との融合研究の実例を学ぶ)
- ○トリ胚組織の「硬さ」や組織にかかる「力」を測定してみる